strong enough (what the French call regard and criard), but muddy withal; you cannot look at it. If a motteled, or flooded, or varied glaze be attempted, the result realises the motting or other peculiarity of the Chinese original distinctly, but misses its easy, careless grace, whereby art conceals artifice. Of course all modern and all English work is amenable to such criticism. For instance, Mr. W. De Morgan's Persian tiles are worthy of unqualified praise. On the red body beneath, a white slip or wash is placed, which, while illuminating the nearly transparent turquoise, green, blue, and blue glazes above, does not reveal itself, nor does it obscure the mechanism of the final success. Here, too, the design of the ornament, the quality of the hues, the degree of glaze, and the blending of contiguous colours are all just simply perfect, and it is not difficult to discover similar meritorious examples in the productions of other factories. Here is a specimen of modern Hanamaki earthenware, in which, upon a softly motled ground of deep colour and crimson, a graceful network of golden foliation is spread. And these beautiful tile-pictures, by Messrs. Simpson, of St. Martin's-lane, illustrating both underglaze and overglaze painting, show the association of high artistic power with the frank recognition of the nature of the materials, and the wits to which the objects are to be put.

A few words must now be said about the specimens of glazes and colours, which are on the table. Porcelain glazes are shown in these Japanese bottles, and in this type of the 15th century, from the ruins of the Blackfriars monastery in Bristol. This English medieval jug shows a green glaze, due to a silicate of lead copper, and iron. This large octagonal old Staffordshire turquoise-shell plate, owe their colours to manganese, copper, antimony, and iron, the glaze in both cases being rich in lead. A milk jug, of about 1750, shows how a lead glaze brings out the colours of the two days, one white, the other buff, from which the vessel has been fashioned. This old Staffordshire iron-red sauce boat exhibits the softening, because solvent, effect of a lead glaze upon the irregular patches and strings of parti-coloured clays, tinted with cobalt and iron, of which it has been composed. A Japanese plate, by Ruren, of about 1730, exhibits the effect of a variegated glaze upon a rough clay, and also affords a good example of glaze upon a white slip. Another bit of Japanese ware, quite modern, is of buff clay on white; the simple decoration is in delicate penelined white, the glaze just developing the colour of both body and design, and not obtruding itself by excessive gloss. Here is a bowl of old Kutani ware, where the base on body tones down the brilliancy of all the coloured colours, save the opaque blue, with which it is decorated. Here, again, is a tea bowl, where the one point noticeable is a rich brown glaze, free from lead, but an ideally perfect glaze. Looking into this glaze, we see its tones are beautifully varied from lav, to lip, and that there is no monitory, as of textureless varnish, anywhere in its substance. A white, porous clay bowl, with cinque-feud in manganese, purpure, and lustrous glazes of cobalt blue, both underglaze, shows the penetration of these colours into the body, and how the glaze has softened and united the whole into harmony. Often, in these Japanese wares, we may notice the play of colour and texture obtained by such simple means as glazing with a colourless glass, one part of a vessel, leaving another part unglazed, or coating another part with a white enamel slip, and tinturing a fourth part with some certain colour. This treatment has been adopted with this vessel, shaped as a bowl, and lends itself with peculiar appropriateness to the conventional representation of the texture, substance, and colour of veins, slip, and glaze. Other glazes on Japanese wares, here are half a dozen characteristic examples, each capable of teaching a useful lesson to Western potters.

These examples of Persian and Rhodian wares and their imitations are most instructive; they show, above all things, how useless it is to attempt the imitation of an effect by means of processes and materials having wholly different physical and chemical characters. Does this modern attempt at Persian science realise any of the beauties of the original? Is it not a ridiculous caricature? Look at the carefully painted imitation of the flooding or spreading at the edges of the colours. Look at the opaque, uninteresting body. Here is no going downwards into the clay, and no dissolving upwards in the glaze. The stanniferous enamels of Italy are seen at their best in such examples as this drugware of Caffizzino; at their worst in this plate of Italian design, 1700, in Liverpool, and Dutch tiles of the eighteenth century may also touch us useful lessons, especially when we compare them with these works of Deck and Pinart (both of Paris), in which the stanniferous enamel and the enameled painting which it carries are fired at the same time.

MISCELLANEOUS.

REPORT ON TWO EXPEDITIONS TO MIDIAN.

By Captain R. F. Burton.

The following lines contain a concise account of the circumstances which, during the last three years, have connected me with the Egyptian provinces, El-Aswan and El-Misr, and in the year 1877, I was invited by Mr. Frederick Smart, with an invitation to visit Egypt, and to lay before him certain details which he had collected concerning mineral wealth in Western Arabia.

The first expedition was at once prepared; it set out for El-Misr, on April 2nd; and returned to Suez on April 26th. During these 18 days we found, by examining the sites, that the country had been extensively mined, but a larger area remained untouched. I brought home specimens of gold, silver, galena, zinc, copper, sulphur, iron, and other metals. I was, however, pleased, and promised me, in presence of Mr. Smart and of other persons, either a commission or a royalty of per cent. on gross proceeds.

Returning from the first expedition I had the honour to recommend to Mr. Charles Clarke (of Zagareft) for the rank of Bey, 2. Lt. Hasan Efendi Harris and 2.Lt. Andre Efendi Kudelli for a step in promotion. I also solicited a small life-pension for Hajji Wali (El-Dia)
of Zaguiaq, who had drawn my attention to the mines of El-Madyan.

On October 29th, 1877, I again left Trieste. After some delay at Cairo, the second expedition set out from Suez on December 11th; and returned on April 12th, 1879. During this journey of four months, Mr. Marie, the engineer sent out by H.H., collected some 20 tons of specimens; and I was directed to have them assayed in London, while Mr. Smart was charged, in my presence, with furnishing the necessary funds. The analysis was duly made and the printed report was forwarded to Egypt; but funds were not forthcoming, and the consequence was, that I was compelled to supply them.

Returning to Cairo I renewed my request touching the pension of Haji Wall; I again submitted for promotion the names of Mr. Clarke and Lt. Amir Riffadi Rashid; and I added to them that of Ahmed Kaput Kaplani Musallam. Moreover, for the better government of the province (El-Madyan), which is about to assume new relations with Egypt, I had the honour to propose—1. That Sayyid Abd el-Rahim, accountant of the Port El-Mawyab, be raised to the rank of Nairam, or commandant. 2. That Mohamed Shahband, Kh Wail, of El-Wijd be made a commandant of that fort. 3. That some token of H.H.'s favour be conferred upon Sheyn Alyan ibn Rabii of the Hawalat tribe, Sheynh Furejy of the Hawalat tribe, Sheynh Moan ibn Sinim El-Ukr.

For the safety of Egypt and Europe I also recommended that the quarantine establishment be re-transferred from Port Said to El-Wijd. Since leaving Cairo (May, 1878), I have repeatedly written concerning the administrative measures to be adopted by H.H. I could go more at large; but hitherto my representations have remained unheeded.

I now return to the mines. The result of the assays made by three separate establishments is so far encouraging that Dr. Percy, one of the highest authorities on metallurgy, declares "These indications of the presence of the precious metals certainly justify further exploration." Such exploration I am prepared to undertake.

I left Trieste on December 5th, 1879, and came to Cairo ready for a third expedition. This time the conditions of transport are more favourable, there is no longer to seek for the sites which are best fitted for beginning operations.

It is, however, evident that no syndicate, no company, would risk capital upon a project, however promising, without the prospect of enjoying the fruits of success. Certain capitalists in London are willing to aid me, but it will be upon conditions that a formal contract or concession be granted to me.

The Natives of Assam. By C. G. Warnford Lock.

The native silks of Assam, known as Eria and Mogh, are produced respectively of Atteus Ricini and Antheria sarmas, and Antheria Moenstheria. The Eria worm is so called from the local name of the castor-oil plant (Ricinus communis), on which it is almost exclusively fed. It is reared entirely indoors. The duration of its life varies with the season; in the summer, it is shorter, and the product is both better and more abundant. At this season, 20 to 24 days elapse from the date of its birth to the time when it begins to spin its cocoon. 15 days later the moth is produced, in three days the eggs are laid, and in five more they are hatched, making the total duration of a cocoon 45 days. In winter, its life extends to nearly two months. Seven breeds are reared annually. For breeding, the natives select cocoons from among those which begin to be formed in the largest number on the same day. Those containing males are recognised by a more pointed end. On the second or third day after the cocoon has been formed, they are put into a covered basket, and hung up in the house, out of reach of vermin and insects. Twenty-four hours after the moths have been produced, the females are tied to long rods or canes, 20 to 25 to each, and these are suspended in the house. The eggs laid by the second moult are removed to feed on bunches of leaves, suspended a little above the ground, and a mat is spread beneath to catch those which fall. When these have ceased feeding, they are placed in baskets filled with dry leaves, amongst which they form their cocoons. In four days, the latter are complete. A selection having been made for the next breed, the remainder are exposed to the sun for two to three days, to destroy the vitality of the chrysalis. The cocoons are next generally put into water containing potash (wood ashes), over a slow fire; when removed, the water is gently squeezed out. At other times, they are massed together for some days with aurita (Cavius poppria) or woodh fruit. The object is the same in either case, viz., to facilitate the drawing of the silk. The cocoons thus treated are taken one by one, and the silk is placed within the thumb of the left hand, whilst the right is employed in drawing out the silk. Any inequalities that may exist are reduced by rubbing them down between the thumb and finger; the same process serves for joining on new cocoons. The thread is allowed to accumulate in quantities of about half a-pound; these are afterwards exposed to the sun, or placed near a fire, till dry, when they are wound up into skeins. The silk is then ready for the weaver. It is the corner of the two kinds, and none of it ever finds its way into Bengal.